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We denote by file, 81,~' the controls which minimize the functionals (5.2), by %,I (2) 
the value of the function nf(z) that corresponds to the control fi~,t’ , and by 
maximum value of the function qJ,1 on the segment lo, 11. It can be shown that a 

w, I’ the 

constant 
ca>U exists independent of e such that the inequalities 

V (p;. I) < V (PO) + cW+* 
q;, 1 Q y” + clew SUP, y(T, 5. S;, [) Q Y' + w2'/3 

(5.3) 

(5.4) 

are satisfied. 
We will select the parameter 1 from the condition that the degree of error with respect 

to functional (5.3) and with respect to the maximum value of the deflection (5.4) are equal. 
Then when 1 = 096 (i + 1) , the optimal control of the set of equations (2.2) that minimizes 
the quality criterion Vt,l (p) determines the e0?4(j+r)-optimal control in the converse problem 
of rod shape optimization. 

In particular, when j=2, the optimal control of the system of ordinary differential 
equations 

d% 
dz’ + 4Yl = - 4 (1 - B) q (P (4) (~0 + m (4). 

-$$ + 4Yi = - av8 (1 - Iv [Y1- BT (P (4) (Y o i m(+)) X P (t + P (4) [expt- yt) - exp (-+')]dt 
0 I 

is the zero boundary condition that minimizes the functional 

rip (4 = Yo (4 + e (1 - azp (--_yF)) Yl@) + @Ya (2) 

The proposed algorithm of optimal shape determination can be applied to rods with other 
forms of support. It is then only necessary to investigate the supplementary conditions that 
guarantee that inequality (2.3) is satisfied. 
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RATIONAL SCHEMES FOR REINFORCING LAMINAR PLATES FROM COMPOSITE MATERIALS* 

V.M. KARTVELISHVILI and V.V. KOBELEV 

New problems for optimizing the internal structure of plates from a laminar 
composite for a number of local and integral functionals are considered. 
A model of a laminar-fibrous composite plate is described. Prior to 
optimization,theplateis apacketof monolayers homogeneous over the 
thickness. The monolayers are formed by periodic unidirectional stacking 
of reinforcing fibres in an elastic matrix. To determine the effective 
elastic properties of the monolayers, a homogenized model of the composite 
material is used. The concentration of reinforcing fibres or the angles 
of orientation of the axes of material anisotropy in a given number of 

*Prikl.Matem.Mekhan. ,48,1,68-80,1984 
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monolayers are selected as control functions. A constraint, which does 
not enable one to go beyond the framework of application of the initial 
model for the composite, is imposed on the gradient of the functions 
giving the mechanical characteristics of the monolayers. The necessary 
conditions for optimality are obtained. Successive approximations are 
used to seek approximate analytic solutions. Optimal schemes are found 
for reinforcing laminar plates of different configuration in the following 
problems: minimization of the maximum plate deflection, maximization of 
their integral stiffness and the first natural vibration frequency. 

1. Model of a laminar fibrous composite plate. lo. Tensor of the effective 
stiffness of a packet of monolayers homogeneous over the thi&cness. In a rectangular coordin- 
ate system xrx$a we consider an elastic anisotropic plate of constant thickness h.The plane 
of elastic symmetry of the plate za = 0 occupies a domain 62 with boundary l?. 

The plate has a laminar-fibrous structure obtained by regular stacking of N reinforced 
monolayers in a packet. The number of layers in the packet is fairly large. The homogeneity 
of the packet over the thickness is assured by periodic stacking of monolayers with identical 
characteristics along the 28 axis. 

The monolayers have a thin periodic structure. A separate s-th monolayer is formed by a 
quasiperiodic system (possessing the so-called symmetry of short-range order /I/) of local 
unidirectional fibres at an angle q,, and 
henceforth s =i,...,N). 

stacked in an elastic anisotropic matrix (here 

Let D= {Dt~rr(x,,z,),irj,k,l = i,2} be the tensor of effective plate stiffnesses /2/ and 

let us express the components of the tensor D~~tlGzj,~p) in terms of components of the mono- 
layer effective stiffness tensor &z(r,V%) as well as the angles of reinforcing fibreorient- 
ation in the monolayers 'pg. 

1,219 

To do this we introduce the rotation matrix iu(cp,) = (&f~~(cp,),i,j = 
where 

In the notation used, we have 

For sufficiently large N and assumptions about the homogeneity of the packet of layers 
with respect to the thickness (i.e., the periodicity of stacking the monolayers with differ- 
ent directions of the axes of anisotropy), we obtain the desired estimate for the components 
of the packet effective stiffness tensor from (1.1) in the form 

(1.2) 

2*. Tensor of effective stiffnesses of a fibrous monolayer. We will describe theinternal 
structure of the fibre monolayer taken separately. 
coordinate system $J~'Y~' 

To do this we connect a local orthogonal 
to the s-th monolayer such that the axis vr8 makes an angle (P* with 

the tl axis. We direct the axis gz* 
with Lam6 coefficients 

along the reinforcing fibres. In each layer the fibres 
&,b are stacked unidirectionally in the elastic isotropic matrix to 

which, the Lamd coefficients 111, p1 correspond. The stacking has a thin periodic structure 
with period e along the yl' axis. The macroscopic stiffness characteristics of the plate 
are here determined for the limit state as e +O. We select a two-component model of the 
composite with the following piecewise-constant distribution law for the elastic constants 
with period e in the s-th layer, we later omit the superscript s in the local coordinatesystem 
notation 

(1.3) 

The square brackets in (1.3) denote the integer part of a number. A function giving the 
ma&oscopic concentration of the reinforcement stacking in the elastic matrix as the period e 
tends to zero is denoted by in, =rr~($fr,@& From the technological viewpoint, for the model to 
be applicable it is sufficient that the rate of change of the function Q(&,u~) should be 
much less than the characteristic rate of change of the elastic constants of the composite in 
the period e as E--+0. Consequently, we impose the following constraints on the modulus of 
the gradient of the function v,(&,Y,): 
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Here and henceforth the subscripts after the comma denote partial derivatives with respect 
to the appropriate coordinate. 

We will express the effective stiffness djkl from (1.2) in terms of h,, PI, h,, f12, v, (yl, yp) 
as e -0 by using the homogenization procedure /3, 4/. For the type of two-componentcompos- 
ite (1.3) under consideration, by using the relationships for homogenized models of regularly 
reinforced composite plates /5/, we obtain after integration with respect to the period E and 
allowing e to tend to zero, taking (1.4) into account, 

d"i = A;', d"z = A,A6', d93=2(~) (1.5) 

4 = AtA;' + A,, d"s = d" = 0 

A,, = (a), A, = (b) , Az = <c) (1.6) 

a = (h + 2~)-', b= ha, c= 4~@ + P) a 

<f) =lii + ’ f&h 
\ 

Here and henceforth, for brevity, the 1111, 1122, 1212, 2222, 1112, 1222 are replaced, 
respectively, by the subscripts 1, 2, 3, 4, 5, 6 (for example, &a = d2‘). 

3O. The technologically acceptable structure of a laminar fibrous composite. Within the 
framework of the model being investigated, we will write down and analyse the expressions for 
the effective stiffness tensors corresponding to technologically acceptable structures of 
laminar-fibrous plates. Using the expressions obtained, the optimal characteristics, in a 
specific sense, of these structures will later be sought. 

The structure 0 (reference). This structure corresponds to the initial state of the 
plate prior to optimization. Here the packet of monolayers is homogeneous in thickness, the 
directions of the reinforcing fibres of all the layers agree: 9s = ma1 and the macroscopic 
concentrations are equal and constant: V. (51, 5~) = v, (y,', y,') = V', 0 < urnin < V" < urnax < 1. In 
this case the fibres in the monolayers form a strictly periodic stack, and we have for the 
components of the effective stiffness tensor of each monolayer: djkl (ZIP %) = dijkl. Hence, taking 
(1.2) into account, we obtain that 0 ” 

Din, (11, 51) = Difi~ s N'dijkl (1.7) 

where d,:,, are calculated from (1.5) and (1.6) for V, = V" 
Structure 1 (inhomogeneous macroscopic concentration in the monolayer). We assume that 

there are n<N periodically stacked plates of monolayers over the thickness, with concentra- 
tions variable in D : U’ (Z1, 2%): vk = V' (ZI, X2), k = 1, . . ., n, 0 <. GQU < 0' < Vmas < 1. The remaining 
N -n layers have the reinforcement concentration V, = v", 1 = n + 1,...,N. The directions 
of the reinforcing fibres agree in the whole packet: ma -(PO. Introducing fi = n/N, we obtain 

DUN (X1, 9) = (1 - B) D&kl + BV' (X1, X9) D:jkl (1.8) 

The components D& are given by the expressions 

D: = -PA;2{a), D: = N3 AG2({b}Ao -{aI AI) (1.91 

D: = PAlAo' ({b) Ao -@I AI) +WN' 

D; = 2Ns(p), D: =D: = 0 

where {f) = iii (f ([yde] + ev, - 6) - f [yde] -I- e% + 6)) is the jump in the functions f on the fibre- 

matrix interface. 
Structure 2 (variable orientation of anisotropy axes in the layer). We now assume that 

the reinforcing fibre concentrations v. in all the monolayers are identical and equal to v', 

I.e., v, = v". Let m<N monolayers be reinforced in the direction a:rpl = d (x1, I~). l = 1, 

. . ., m,a# q?. where cpO is the reinforcing direction of the remaining N-m layers in the 
packet. Introducing the quantity y =TIUN, we have 

D i~kl P (1 - I') D&l + VD& (1.10) 

where the components Dtrl are given by the expressions (s = Sina, C =COSa) 

D,'= Ulc' + U# -I- Ua, ¶ 04 = VI.+ + Us' + UB, 

Dlz = '!p (U, + U,)4~c' + D;, D3' = '12 (U, + U,) s=a= + D, 

DIz = =I& (U,Sa - U,c=), Daa = '1, (U&= - UP"? .X 

&=D,O-D,O-2D;,Ua=D;---2D;,U3=D;+2D: 

Hypotheses of short-range order symmetry (on which the introduction of effective moduli 
is indeed based), formalized for concentrations in the form of the inequalities (l.a), are 



formalized for angles of orientation cf (X1, Xl) in the form I Va I = I/cbz + a2 < u, where u 
the characteristic dimension of the short-range order domain (0-x). Note that by using 

Cauchy inequality the constraint mentioned is reduced to a constraint on the curvature of 

stacking lines of the reinforcement (t is a parameter along the stacking trajectory) 
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is 
the 
the 

1 a&t I< 1 Va 1 Q u (1.11) 

2. Formulation of optimization problems. Necessary conditions for optimal- 
ity, lo. Formulation of plate structure optimization problems. Having constructed the 
model of an anisotropic laminar-fibrous plate in the preceding section, we will now formulate 
optimization problems for the internal structure of bent and,pscillating plates. 

Among the constraints imposed on a design in addition to basic requirements in problems 
of designing composite plates are 

Jo=&~(wz)d~ (2.1) 
a 

Jl= l/p. S S f (WL’t W) d62, f (WY U)=Dtjk$‘,iju,kl (2.2) 

J2=Ck-$n(~~ f(w,z+lR/SSw%pdR) (2.3) 

P 

Js = ,Ilm~;ol w (% ;cp) I 
(2.4) 

on the total mass of material (2.1) (p(x,,q) is the macroscopic density of the composite 
material), the integral stiffness (2.2), the first natural vibration frequency (2.3), and the 
maximum deflection (2.4). Here f(w,u) is a symmetric, continuous and positive-definite bi- 
linear form generated by a fourth-order differential operator 

L 101 w = (D,M'.J,LI 

that is equivalent on the left side of the plate bending differential equation to the trans- 
verse forces Q (X1, X2) 

L [Dl w = q (3, XI) (2.51 

The form of f(w,u) is determined-in the set HAobtained by closure of the set cm(Q) of 
infinitely differentiable functions in 9 that satisfy the appropriate conditions of stiff 
clamping and free support in the Sobolev space w,*(Q) 

(KI M)r = 0 
where Kj are linear homogeneous differential operators evaluated on the piecewise-smooth 
boundary r. Fro the two-component model of the composite introduced, the density p(x,,X,) 
in (2.1) and (2.3) has the form 

where pI is the density of the matrix material, and h is the density of the reinforcingfibres. 
We henceforth assume that the mass of the canposite is fixed 

Jo = MO (2.6) 
This means that during optimization, condition (2.6) occurs in the set of isoperimetric 

conditions. 
We select as optimizing functional one of the functions (2.2)-(2.4). In other words, 

for a 'given mass we will increase the stiffness or the least eigen frequency of the plate. 
The concentrations V, = v' (x1,x*) (1 = 1, . . ., n) which are subject to the technological con- 

straints (1.4) and 0 < vmfn Q ti < vmr < 1, are the control functions for structure 1. Intro- 
ducing the new control function V =vl -(v m.x + v,,&/2 we reduce the last constraint to an 
inequality more convenient for further examination 

I v @I, 4 I < rl? tl = bax - mriY~ (2.7) 

and the isoperimetric condition (2.6) to the equality 

~1-~Sv(x14¶)~~=- (2.8) 
P 

We select the angles of fibre rotation in the monolayers ml =a(X,,X*) (1 = i, . . ..m) as 
control functions for structure 2. 

We thus formulate the optimization problems for structures 1 and 2. 
structure 1. Find the optimal concentration distribution V opt (q, zn) = V (x,,zt) in B which 
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will minimize (2.4) (problem 1) , maximize (2.3) (problem 2) under the isoperimetric conditions 
(1.4) and (2.6) and the constraints (2.7). 

Structure 2. Find the optimal angles of rotation CLopt(tl,q) in Q which will maximize 
(2.2) (problem 3) or (2.3) (problem 4) under the isoperimetric conditions (1.11) and (2.6). 

2O. Successive approximations. Necessary optimality conditions. We will obtain the 
solution of the above problems by the method of successive approximations, according to which 
a correction 6V"(x1,zl), assuring improvement in the structure in the sense required, can be 
constructed by relying on knowledge of the running structure of the plate being designed at 
step k. Furthermore, where possible the superscript k will be omitted. Writing down the 
successive approximations relations, we deduce the necessary optimality conditions from them 
as a particular limit case in problems where the concentration of inclusions (structure 1) is 
the control function. To this end, we replace the local constraints (1.41, (2.7) and the 
local functional (2.4) by their approximate integral analogs. 

For p,g,r tending to infinity, (2.9) and (2.10) become (1.4), (2.71, and (2.4). 
Considering 8V as a vector in infinite-dimensional Hilbert space with the scalar product 

(a, b)= ss=&d~ 
P 

we express the total variation of the functionals being optimized J,, (n = 1, 2, 3) in the step 
k from (2.21, (2.3f, (2.10) and the variations of the constraints $,,, (m = i,2,3) from (2.8) 
and (2.9) in terms of the variation of the control function %V. To eliminate the variation 
in the phase variable 8m we introduce the conjugate variable to u(xr,x~), equal to u = -w 
for the functional (2.2), u = -2~ for the functional (2.3), or eubject to the equation 

(DiJJrlu, kl), 11 + s-1 lw/ 11 w h)‘” = ’ 

for the second functional (2.9). Then the variations of the optimizable functionals and 
constraints take the form 

(2.131 

The constraints (2.8) and (2.9) govern the allowable domain h of the space of controls 
whose boundary an is given if there are equality signs in (2.9). The form of the expres- 
sion fox the improving corrections 6Vmk depend in each step on the number and form of the 
active constraints being taken into account (m is the number of constraints takenintoaccount). 

The control function Vk = Vk-l-+- 6V,k, as well as the corresponding phase and conjugate vari- 
ables Wk,lbk satisfy here the optimality conditions if the variations calculated in this 
manner vanish when substituted into the expression for the variations of the control functions. 

For instance, if the control vector belongs to the interior of the domain A (i.e., 
P-l~i\\Mf, then a variation of the form 

hV,k= f+?l (O<TQU (2.14) 

can, in particular, be the allowable improving correction av,k, where the plus sign corres- 
ponds to maximization of the functional. Therefore, the optimality condition for the problem 
without constraints has the form 5,,= 0. 

If the control vector belongs to the boundary of the domain 8A (we note that the iso- 

perimetric condition of constancy of the mass Ipr -0 should be satisfied at each step), while 

the projection of the vector 6V ,,' is wsitive on the external normal to the surface aA, then 

the allowable improving variation is constructed by successively taking into account the 

constraints(y,, 6V,')=O (m = 1,2,3) by using the Gramm-Schmidt orthogonalization procedure 

6V,'c = svk,_, - (sv:_,, Y,) Y&T,, YnJ (2.15) 
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(we recall that the subscript m denotes the number of constraints taken into account). Con- 
sequently, the improving variation in the problem where just the isoperimetric condition of 
constancy of the mass of the composite material is taken into account, has the form 

81' k = fr[@,, - s-l(G),,, I)1 and the optimality condition is @, = S-l(@,,,l), which converges, 
sa;, to the condition of constancy of the strain potential energy density for @r. 

A stepwise algorithm for solving optimization problems can be constructed on the basis 
of the relationships obtained. At each step the phase and conjugate variables are sought 
successively for the running value of the control functions, and when they are known, we 
construct the improving correction that assures optimization of the quality functional by 
taking account of the constraints. If the boundary conditions and the nature of the load 
enable analytic expressions to be obtained at the running step for the phase and conjuate 
variables, then the improving correction to the control function can be determined analytic- 
ally. Analytic solutions of optimization problems for the first approximation :k = 1) will 
be constructed below. 

3. Analytic solutions in problems of selecting the optimal distribution of 
the reinforcing fibre concentrations. lo. Minimization of the maximum deflection of 
a multilayer plate for a class of forces realizing a normal load. 
laminar-fibrous plate Q (O,<q<a, O<Z,<~}. 

Consider a rectangular 
simply supported at the contour I'and subjected 

to transverse forces 4(r,,zJ. In this case, the equation for the phase vaxiable m h 3 

has the form (2.5), and the boundary conditions are written as follows: 

w (0, r*) = w (a, 5%) = (Drlu,r, + D~Q,M + 2os~,,ob~ = 0 (3.1) 

ZJ f% 0) = w (zr, b) = (Dow,,, + D&J,,, + ~~~,I~~~ = 0 

We consider the function q(sr,s~) to belong to the class of 
in the domain a and have generalized derivatives with respect to 
For simplicity, we consider the function q(xr,za) to be expanded 
series containing only products of the sines 

functions Q that are summable 
xlandrS to the required order. 
in the domain p in a Fourier 

13.2) 

According to the method described in Sect-Z, a first approximation is successfully con- 
structed analytically in the problem of minimizing the maxi&m deflection 
conditions and kind of load mentioned because of selection of the optimal 
the reinforcing material concentration (problem 1). Thus, Eqs.(2.11) for 
imation become * 

j)ijklW:tjkt ES G'S 
0 

=&jktw:lju. kI 

for the boundary 
distribution of 
the first approx- 

(3.3) 

The solution of boundary value problems for the phase and conjugate variables W*and IL" 
is found in the form of double Fourier series. Taking account of the nature of (3.3), Green's 
function can be used to find the functions mentioned. Omitting the lengthy computations, we 
write the expression for the function @a (zX,xn) from (2.12) : 

(+-)” + [Dal(+)” + ~2(+-)'] (+y} f 

(3.4) 

Let us take account of the isoperimetric condition of constancy of the mass of the 
composite (2.8) and the constraints (2.9). If just the constrains on the gradient of the 
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function J'@,, 52) from the first condition (2.9) is considered, then the vector SV,l from 
(2.15) is found from (2.14), (2.15) 

6V,' = @3,SV,l = CD3 - s-l@,,, 1) 
(3.5) 

6V*'=W1 - 
(fW,l, v [I vvo 19-z VP]) v (IWO 19-I VP) 

(V (I VV” 19-9 VVO), v (I VVQ 19-z VP)) 

Taking dCCOUnt Of the constraints (2.8) and the second condition (2.9), results accord- 
ing to (2.14) and (2.15), in the improving correction 

Fig.1 Fig.2 

As an illustration, we will select the transverse load q= sin==, X sinlrzz(a = b= 1). Having 
determined the improving correction bV= W(+I,Z&~ we trace the nature of the change in the 
optimal distributions of the reinforcing fibre concentration of in n<N layers with the 
growth in the initial (reference) concentration v" of the whole packet. The solutions obtained 
are symmetric about the lines zl= O,Z*= 0.5. Isolinesofthedesiredoptimaldistributions aredis- 
played in square quadrants d,b, c,d (clockwise) in Fig.1 for v0 = 0,0.33,0.66, 1 , respectively. 
A large concentration of reinforcing material corresponds to isolines with a high ordernumber. 
Note that if the first constraint in (2.9) is not taken into account, then as p and r grow it 
follows from the second constraint of (2.9) and (2.10) that the nature of the optimal distri- 
butions tends to the Rayleigh mode. Isolines of the optimal distributions are constructed 
for V" = 0.5 in square quadrants a andb (.left to right) in Fig.2 for 4=sinZx~,ain3nz~ and 
* = sin3nr,sin2nl,, respectively (a = in= 1) The asymmetry obtained is due to the anisotropy of 
the plate stiffness characteristics for the reference concentration distribution. 

2O. Optimization of the eigenfrequencies of a multilayer rectangular plate. Let us 
consider the problem of optimizing the first eigenfrequency of a simply supported rectangular 
plate (problem 2). The frequency of the fundamental mode of the transverse vibrations of a 
homogeneous anisotropic plate equals /2/ I3 = f/hpQ,,, while the first eigenfunction is w0 = 
sin $, sin 2,. Performing calculations similar to those carried out for the stiffness optimiza- 
tion problems, we obtain an expression for the function Q)2(~lr~2) from (2.12) in the form 

a1 = &Q-lb-l [(D,la-* + 2Dalb-2a-2 -l-D,'b-~)sinZ~l sin* Z, + 4a-2b-aD,1 cos* 2, COS* 2,1 

It is seen that the formula obtained agrees with @'s from (3.4), constructed for the load 
4 = sin z,.sin 2, apart from a colistant. Here it is necessary to set r=2 in the expres- 
sion for aa. 

The property mentioned is even valid for high frequencies, namely, the pattern of the 
concentration distribution in the problem of optimizing the eigenfrequencies corresponding to 
the vibrations mode w" =sin s~,sin tZ, agrees with the concentration distribution in the 
stiffness optimization problem for the transverse load Q = SinSZlsin &. 

Isolines of the optimal distributions of bonding material are constructed in Figs.1 and 
2, respectively, for s= t=l (Fig.1); s= 2, t=3 (Fig.Za); s=3,t=2 (Fig.Zb). Values 
of the initial reference concentrations are mentioned in Sect.lO. 

30. Optimation of the overall stiffness of a multilayer elliptical plate subjected to 
a normal load. We will present the solution of the problem of maximizing the overall stiff- 
ness. Consider an elliptical plate clamped rigidly along the edge and bent by the normal load 



q (Xl, 4 = go* We direct the axes xland x*along 
the magnitudes of the principal semi-axes by a 
corresponding to rigid clamping have the form 
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the principal axes of the ellipse and denote 
and b. The boundary conditions of the problem 

The fourth-degree polynomial /2/ 

Up = (goa418P)(l - x,Va* - x,*/b*)* (3.8) 

13' = 3Lf,O + 2&*(L); + 2D,')+ 3D,'@, e = al b 

is a solution of the bending equation of an anisotropic plate with coefficients &j&f and 

boundary conditions (3.7) in the elliptical domain n (xl*/u*-j- x**ib*\< 1). 
Here the function @r(x,, x*) from (2.12) equals 

Q, = D,l (3x,2a-4 + x*2a-ab-2 - a-*)* + 8 (D*l + 20,') x,*x,*a-*K* + D,' (3x**b" + ~,*h*b-~ - b-9* 

The optimal concentration distributions yields (3.51, (3.6), where @* must be replaced 

by @11. 
4. Ratidnal schemes for fibre orientation in monolayers, lo. Pormulation of 

the problem. Let us consider the problem of the analytical determination of rational schemes 
for orientation of the reinforcing fibres in flexible laminar plates. We select the magnitude 
of the strain energy (integral stiffness) (2.2) of the plate as the function to be optimized 
and we consider the problem of minimizing this functional by a rational selection of the 
orientation of the lines of anisotropy (problem 3 for structure 2). 

Let us associate a Cartesian 9% system of coordinates with the middle plane of the 
plate. The plate deflections w(x,,x*) due to the action of transverse loads are considered 
to be small. At each point the bending of the middle surface is characterized by the princ- 
ipal radii of curvature of the bent surface kr,b, which are calculated as the roots of the 
quadratic equation /6/ 

(w Uw,** - I.+**) - (w,**.+ w,n) k + k* = 0 (4.11 

The equations of the lines of curvature X1 = Xx (XI, x2), X* = X* (z,,x*) are integral 
curves of the differential equations 

&,I =p+ fP2-k 1, x*,1 =p- VP_ P==fW,, -~d2~,lz (4.2) 

If the bent surface w (x1, x2) does not contain umbilical points (round-off points at 
which k, = k*), then there are two orthogonal families of lines of curvature X1, X,. We use 
the families X~(X,,+%) and X*(X*,X*) mentioned as a new curvilinear coordinate system. The 
field of local angles of rotation of the axes (X,X,) relative to (x1x*) is denoted by E = 

s (x11 x2). Note that the orthogonality of the coordinate lines can be retained at the umbil- 
ical points by selecting the two directions that are a continuation of the lines of curvature 
in the neighbourhood of theumbilical point, as the principal directions. 

Let c = g(xr,x*) be the angle between the axis XI and the axis g* that coincides with 
the direction of the reinforcing fibres in the initial structure. Then the condition a= 
5 + c holds for the desired angle of fibre stacking a with respect to the axis% of the 
Cartesian system of coordinates. Therefore, the problem will be solved if the angles B(x*,q) 
and 5 (xr,z*) are found. 

20. Rational methods of reinforcing with small curvature of the reinforcement stacking 
lines. We use successive approximations to find the angles z and f : by knowing the value of 
the deflection function w in the step k and, therefore, knowing the distribution of theangles 
g and the curvature kl,k* as well as the running distribution c, we find a new rational 
distribution of the angles $,(x1, x*f which improves the functional (2.2) being optimized. We 
hence require that the change in the distribution of the deflections wdue to the variation 
65 in the desired function 6 be sufficiently small at each step. According to (l.lO), this 

can be achieved if at each step 

D~jsl~~tjw,kl~Y(D~jkl - &)W,G',kl 

The inequality will be satisfied in two cases: a) if the step-by-step change in the 
angle se being optimized is insignificant (sg<f); b) the Ilumber of layers m in which the 
orientation of the angle 5 (or a) is selected is small compared with the total number of 
1ayers.N. 

Using the above method, we construct first the improving variations of the function < 
for the first case (65< 1). The function f(W, W) from (2.2) that is dependent on the 
principal curvatures &, k, and other constants of the packet is written in the followingform 
in the X1X2 system of &ordinates 
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f = ‘isf’ = V,,(f,, + fl cos 2 6 + fa ~0925) 8. f,, = &x2 (Q1 - 4%) + hk, (Qs + Qd -I- k,’ (Qr - QJ 14.3) 
fl = Qs (k,l - k,?, fg = 24s (k, - k,lP i) Q1 =3D: - 3DP + zD,o i- 4D,‘, Q2 = D,” - D,” 

Qs = D,“+ D,” - 24” - @;, Q4 = Di” f Da0 + 6D,O AD,” 

The problem of maximizing the overall stiffness (minimization of the compliance) 

s,i 
qwdP-+ mint 

by using the variational principle 

IP = min, II =min+-pwdP) 

reduces to solving a maximin problem /7/. 
In fact, because II* = --II, we have mintJ, = minf(-II*). The expression for the variations 

of the functional Jr in terms of the variation of the control function SC in Ki* written in 
the form 

6J1 = (@,6{), ~=-/,sin25(fl+2fee092r) (4.4) 

The variation of the approximate integral analog of the constraint (l.ll), constructed 
as in the first condition of (2.9), has the form 

&p = (Y, sg), Y = (OS 1 VC &?-~)-IV (1 vg IP-* V6) (4.5) 

By using the expressions obtained and the algorithm described, an approximate solution 
of the optimizatiop problem is constructed. The step-by-step change in the angle being 
optimized (the improving variation) is given by the formula 

We will present some examples of the utilization of the formulas obtained. We consider 
first a simply supported square plate (0<~1<1, O<;C,<~, subjected to a distributed load of 
the form p=psinnx,sin~. In this case the deflection function UJ(S~,Z& is proportional to 
the load distribution while the lines of curvature of the bent plate surface'are a family of 
lines parallel to the diagonals of the square. Initially (in the zeroth step), the reinforce- 
ment is laid out parallel to the I% axis, and consequently, makes a constant angle c= n/4 with 
the lines of curvature. Using the expression for the principal curvatures 

k+ = sin IT+~ sin "zn f 1 cosnq cosxz, 1, i = 1, 2 

and taking account of (4.4) and (4.51, we obtain 

65 = X sin 2ntl sin 2x5 sign (cOsRZI COSlirg) 

where T>O is a small constant. The function bb (xl, ~~2) is positive for all points of the 
plate. Therefore, the tendency is manifest' for the formation of a slope at a definite side 

of the reinforcement stacking lines over the whole plane of the 
plate (the solid lines in Fig.3). We note that an exact solution 
of the optimization problem exists for the above-mentioned of 
loading a square plate: the reinforcing lines are parallel to the 
diagonals of the square, hence the maximum deflections are optimal 
and the reference plates are cited as (Dl+ D,+20t+40,)/(4D1), which 
is 0.35 for a graphite-epoxy composite and 0.3 for a boron-epoxy 
composite. In addition to the rational stacking (the solid lines) 
in Fig.3, the optimal scheme (the dashed lines) is also displayed 
for comparison. It is seen that the approximate method of con- 
structing a rational scheme manifests the characteristic features 

a 
of the optimal solution. 

Let us consider the problem of determining a rational scheme 

Fig.3 
for reinforcing a stiffly clamped circular plate loaded by a uni- 
form normal load. The plate deflection is given by (3.81, the 

principal curvatures of the bent surface equal kI =i co (q* f lo* - 1), h = (%'-t 3%" - 1) Co1 Co ;= &8D'. 

In the first step the reinforcement stacking lines make an angle 6 = arctg (z,/**z,) with the lines 

of curvature. Substituting the formula mentioned into (4.4) and (4.5), we obtain the desired 
function 

at = rxl% [Qa (P* - 1) + 4Q3 i+* - %*)I, r=;l/l,e 

3O. Rational methods of reinforcing with arbitrary curvature of the reinforcement stack- 
ing lines. We will examine still another possible method for making a rational selection of 
the fibre stacking direction, i.e., the case when the number of layers in which the orienta- 
tion of the reinforcing material is selected is small compared with the total number of layers 
in the packet. We assume that o-+00 in (4.5). This means that Large curvatures of the re- 
inforcing fibre stacking lines are allowed in (1.11). Making this simplifying assumption, we 
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separate the energy integral into two parts 

(4.6) 

The problem of determining a rational scheme reduces now to determining c (rr,%) and 

I; @l, 4 fromthe condition of the minimum of the second component in (4.6). Because of the 

smallness of Y the distribution W(.%Y%) is here considered fixed at each step. 
The extremum is reached in (4.6) if the fibre direction and the lines of curvature either 

agree, or are mutually perpendicular, or make an angle g = 'i, arccos (j&%)). In particular, 
the optimum is achieved if the direction of the stacking lines agrees with the direction of 
the lines of maximum curvature. The values of the second component in (4.6) for the three 
regimes mentioned are, respectively, fo i- fl i-fr, fo - fx +fa* and fo - f,“/(4f,). 

Note that this method of selecting the fibre orientation results in a gain in the func- 
tional (4.6) provided that kl# k2. At the umbilical points (k,= 4 the direction of fibre 
orientation is selected so as to ensure smoothness of the reinforcement stacking lines. This 
method of selecting the stacking orientation of the reinforcing fibres is suitable even in the 
case when G is finite. The domains in which the curvature of the stacking lines exceeds the 
ultimately admissible value of Q are placed arbitrarily (in particular, with the condition for 
ensuring smoothness of the reinforcing lines). However, even in this case this method of 
rational orientation improves the quality functional, as can be shown by using energy estimates. 

We emphasize that if the quantity Y is small and the distribution of the deflections in 
each step depends substantially on the desired fibre orientation a(zl,Q, the problem can be 
solved, using the necessary optimality conditions /8/, by numerical methods. 

Let us construct rational stacking schemes using the algorithm proposed. We consider a 
simply supported square plate, loaded as in Sect.3 by a sinusoidal load. The reinforcement 
stacking lines either agree with the lines of curvature (the family of lines parallel to the 
diagonals of the square), or make an angle 5 = 'I, arccos(- Qztgnqtg ~M2Qsl. The latter rein- 
forcing method does not result in a gain in the functional in this case, while the first two 
yield an identical value of the gain. We note that the rational reinforcing scheme in the 
example presented agrees completely with the optimal scheme (item Z" of this section). 

The reinforcing method in which the fibres are also laid out along the lines of maximum 
curvature results in a gain in the functional for a circular plate. This method governs the 
rational reinforcing scheme in which the fibres are laid out in an annular direction in a 
circle of radius l/1/2 , and in a radial direction in the rest of the plate. 

A model of layered fibre-bonded composite plates has been constructed above, which is 
based on the hypothesis.of a monolayer packet homogeneous over the thickness, andonananalysis 
of a fibre monolayer by using the homogenization procedure. Taking acoount of the constraints 
on the gradients of the functions yielding the concentration and stacking angle of the rein- 
forcing fibres is sufficient for the model used to be applicable. Within the framework of 
the model under consideration, optimization problems are posed, and optimality conditions are 
written down. We note that utilization of constraints on the concentration gradient governs 
the existence of the classical solution of the optimization problem /9/. The method of con- 
structing approximate solutions enables an analytical determination to be made of rational 
reinforcing schemes for elements of composite structures by relying on a knowledge of the known 
solutions for the states of stress and strain of homogeneous plates with rectilinear anisotropy. 
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